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A B S T R A C T   

Criminal expertise plays a crucial role in the choices offenders make when committing a crime, including their 
modus operandi. However, our knowledge about criminal decision making online remains limited. Drawing on 
insights from cyber security, we conceptualize the cybercrime commission process as the sequence of phases of 
the cyber kill chain that offenders go through. We assume that offenders who follow the sequence consecutively 
use the most efficient hacking method. Building upon the expertise paradigm, we hypothesize that participants 
with greater hacking experience and IT skills undertake more efficient hacks. To test this hypothesis, we analyzed 
data from 69 computer security and software engineering students who were invited to hack a vulnerable website 
in a computer lab equipped with monitoring software, which allowed to collect objective behavioral measures. 
Additionally, we collected individual measures regarding hacking expertise through an online questionnaire. 
After quantitatively measuring efficiency using sequence analysis, a regression model showed that the expertise 
paradigm may also apply to hackers. We discuss the implications of our novel research for the study of offender 
decision-making processes more broadly.   

1. Introduction 

The Expertise Paradigm in criminology describes how the develop-
ment of domain-specific skills and knowledge is related to offending 
(Nee, Gelder, Otte, Vernham, & Meenaghan, 2019; Nee & Ward, 2015).1 

In psychology, expertise has been defined as the combination of “skills 
and knowledge an individual develops through learning and concerted 
practice in a particular domain” (Nee et al., 2019, p. 483). In this 
way—intentionally or not—individuals develop expertise along a con-
tinuum of competence that discriminates novices from masters (Chi, 
1989; Chopin, Paquette, & Fortin, 2022; Nee & Ward, 2015). Nee and 
colleagues (2019) argue that the Expertise Paradigm complements the 
Rational Choice Perspective (Cornish & Clarke, 1986) and extends ex-
planations for offending with automatic or unconscious decision mak-
ing. Since early research on burglars (Wright, Logie, & Decker, 1995), 
studies have consistently shown that more criminal expertise results in 
greater situational awareness, which contributes to automate the 
crime-commission process (Nee & Ward, 2015). Therefore, the more 
expert burglars act more efficiently (Meenaghan, Nee, Vernham, & Otto, 
2023; Nee & Meenaghan, 2006). Efficiency is essential to understanding 

the crime commission process, as it reveals how offenders optimize re-
sources while minimizing risk and maximizing profits. Ultimately, this 
insight can serve to develop prevention measures aimed at rendering 
crime ineffective enough so as to discourage offenders from committing 
it. 

However, ongoing discussions on whether cyber offenders differ 
from traditional offenders (Weulen Kranenbarg, Holt, & van Gelder, 
2019; Weulen Kranenbarg, Ruiter, van Gelder, & Bernasco, 2018; 
Weulen Kranenbarg, Ruiter, & van Gelder, 2021), along with recent 
developments in criminal business models like cybercrime-as-a-service 
(Hyslip, 2020), raise questions about whether the observed relationship 
between criminal efficiency and expertise in offenders such as burglars 
(Meenaghan et al., 2023; e.g., Nee et al., 2019; Nee & Meenaghan, 
2006), carjackers (Topalli, Jacques, & Wright, 2015), and online sex 
offenders (Chopin et al., 2022), holds true for hackers; that is, whether 
higher hacking expertise is also related to higher hacking efficiency. A 
better understanding of the relationship between expertise and effi-
ciency in hacking could shed light on the modus operandi of cybercri-
minals and identify attack patterns of novices and experts. In this way it 
would be possible to identify different attack vectors leading to tailored 
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responses, as well as addressing emerging threats before they escalate. 
Hacking can be broadly defined as the unauthorized trespassing of a 

computer system (for a discussion, see Holt, 2020). A system can be, for 
example, a personal computer, a workstation, or a web server. There are 
multiple ways to hack into a system ranging from social engineering to 
the use of malware, and not all of them require the same skills (for re-
views see Furnell, 2014; Maimon & Louderback, 2019).2 Website de-
facements are hacks that modify the content of a web page without 
permission of its administrator (e.g., Holt, 2011; Moneva, Leukfeldt, van 
de Weijer, & Miró-Llinares, 2022), and are often carried out by script 
kiddies who want to gain status within the hacker community (Holt, 
2007), or by hacktivists with political motives (Romagna, 2020). A 
common target of defacements are websites created with WordPress, the 
most popular open-source content management system for website 
creation. Not all hackers are equally efficient though. For example, a 
study found that financially motivated hackers can be either fast and 
unsophisticated, or slow and sophisticated (Wieren, Doerr, Jacobs, & 
Pieters, 2016). Another survey-based study reported that hackers with 
rational information processing tendencies used more effective hacking 
methods than those with experiential tendencies (Bachmann, 2010). 
These results suggest that hackers acting rationally would try to mini-
mize their effort while navigating cyberspace toward their target. 

This pre-registered study builds on existing research and extends it to 
the online environment. In particular, we examine the efficiency of IT 
students in hacking a website within a controlled online environment 
that, for 1 h, monitors their online behavior. 

2. Criminal expertise and the hacking process 

Decades ago, criminologists suggested that expert offenders are able 
to process environmental cues effortlessly and make better target se-
lection choices (Brantingham & Brantingham, 1978). Unlike traditional 
offenders, hackers carry out crimes online. To navigate cyberspace, 
hackers must pass instructions to a computer by means of clicks and 
keystrokes. So, while physical distance is an offline impediment that 
hackers do not face online (e.g., Yar, 2005), they may encounter other 
obstacles, such as the natural or computer languages they must know to 
access certain information. Here, expertise is key, as it is more likely that 
hackers with more knowledge and IT skills will overcome these obsta-
cles with less effort, adopting a more efficient modus operandi. In 
contrast, a lack of expertise can also lead hackers to retrace their steps or 
take additional steps, which requires more time and effort and is 
therefore less efficient. This means that contingent upon the level of 
expertise of hackers and their decision making, the crime commission 
process unfolds in different ways. 

There are indeed multiple ways to hack into a system, each 
demanding a different expertise. Less technical hacks usually involve 
some form of social engineering, like phishing, or an oversight on the 
part of the system administrator. Against the myth, it is not always 
necessary to be an IT expert to hack a target. Cybercrime-as-a-service 
makes affordable toolkits, such as remote access tools or phishing kits, 
available to potential hackers (Hyslip, 2020). The tutorials that 
accompany these products make hacking easy for many. Within the 
more technical hacking methods, there are also degrees of sophistication 
(Maimon & Louderback, 2019). One of the least sophisticated methods is 
the brute-force attack, which consists of implementing an automatic 
method to test a massive list of passwords against a login system. A more 
efficient version of this hack would be a dictionary attack, which would 

only use the most popular passwords. But even this small refinement 
requires some expertise from the offender, who has to know where to 
find a directory of frequently used passwords. The next step on the so-
phistication ladder includes SQL injections, which insert malicious code 
to extract data from a vulnerable data-driven application. When the 
target of the hack is a website, a common technique is the directory or 
path traversal attack. This type of attack relies on the existence of 
standard directory structures in systems to access sensitive files, such as 
usernames or passwords. Systems based on directory templates, such as 
WordPress, are particularly vulnerable to this type of attack. Among 
those that require a higher degree of sophistication are hacks that 
employ malicious software to collect sensitive information through the 
keystrokes of their victims—spyware—or to take control of a system-
—trojan. This wide range of techniques, that includes just a few (for a 
review, see Furnell, 2014), shows that hacking is a cybercrime that 
admits different expertise, which makes it attractive to a wide group of 
cyber offenders. 

Despite the variability of the crime commission process, criminolo-
gists and computer scientists have attempted to organize crime in a 
standardized sequential process using analytical frameworks such as 
crime scripts (Cornish, 1993), and the cyber kill chain (Hutchins, 
Cloppert, & Amin, 2011). For Hutchins et al. (2011), the cyber kill chain 
can be captured in a sequence of seven phases (Table 1). From the first 
phase of reconnaisance to the last phase of command and control, hackers 
must act on a series of decisions that transport them through the kill 
chain in one way or another. Both crime scripts and kill chains have the 
same purpose: to comprehend the crime commission process to identify 
disruption points. Beyond formalizing the original phases, there is no 
standardized method for representing crime scripts or kill chains. The 
progressive model of phases, spanning from before, during, to after the 
commission of the crime, along with the apparent clarity it provides, 

Table 1 
The seven phases of the cyber kill chain applied to website defacement.  

Phase Label Description Website defacement 
example 

1 Reconnaissance Doing research to 
identify and select 
targets. 

Gathering information 
about a target website like 
software version, plugins 
installed, and potential 
vulnerabilities. 

2 Weaponization Attaching malware to 
an exploit on a 
deliverable. 

Creating a malicious script 
to exploit the identified 
vulnerabilities via code 
injection or file 
manipulation and 
embedding it in a file. 

3 Delivery Transmitting the 
deliverable to the 
target. 

Sending the manipulated 
file to the website through a 
compromised plugin or 
injecting it directly into its 
directory. 

4 Exploitation Triggering the 
malware of the 
deliverable. 

Executing the script to 
access sensitive files, 
compromise login 
credentials, or initiate 
remote code execution. 

5 Installation Fixing the malware to 
maintain presence 
inside the target. 

Establishing a persistent 
foothold on the 
compromised website by 
modifying critical files. 

6 Command and 
control 

Establishing a channel 
between the controller 
server and the target. 

Setting up a channel to 
remotely control the 
website, often through a 
backdoor or hidden 
communication protocol. 

7 Actions on 
objectives 

Interacting with the 
target further. 

Defacing the website by, for 
example, altering content or 
displaying political 
messages. 

Source for “label” and “description”: Hutchins et al. (2011). 

2 Note that cybercrime-as-a-service has democratized access to cybercrime, 
offering tools, processes, and services that require minimal knowledge and 
skills at a low cost (Hyslip, 2020). Notably, many of these materials are readily 
available on the clear web at no cost, introducing a new dimension to the crime 
commission process and making it particularly accessible to non-expert and 
potential hackers. 
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encourages presenting scripts in a linear manner. With few exceptions 
that explicitly acknowledge cyclic processes in the script (Matthijsse, 
van ’t Hoff-de Goede, & Leukfeldt, 2023), most scripts are presented 
linearly (Holt & Lee, 2022; Hutchings & Holt, 2015; Loggen & Leukfeldt, 
2022). The resulting linear schematic representations of crime, whether 
scripts or kill chains, may therefore be overly simplistic, and important 
nuances for understanding crime in cases that are not straightforward (e. 
g., incomplete attempts, recurrence in certain phases, return to previous 
phases) would get lost. 

To delineate a more realistic crime-commission process, we apply 
sequence analysis—a method to study and interpret patterns in a series 
of events (Ritschard, 2021). We collect objective behavioral data to 
analyze quantitatively and in detail how IT students navigate the phases 
of the kill chain. The resulting sequences of actions reveal new patterns 
of behavior in the hacking process, while sequence indicators also serve 
to propose a novel quantitative measure of criminal efficiency. 

3. The present study 

Based on the Rational Choice Perspective (Cornish & Clarke, 1986), 
we assume that hackers are rational beings who will try to maximize 
rewards with minimum effort. In their attempt to trespass a computer 
system, hackers would then try to follow the most efficient methods: 
those that lead to a successful hack with the least effort. To measure the 
efficiency of a hack, it is first necessary to determine which way of 
hacking requires the least effort. In this study we assume that following 
the sequence of steps described in the cyber kill chain (Hutchins et al., 
2011) is the most efficient method of performing a hack, as long as the 
sequence is followed in a linear fashion, without recourse in its steps. 
Hacking efficiency can therefore be defined as the extent to which a 
hacker successfully progresses through the phases of the kill chain while 
reducing phase repetition and sustaining forward momentum in the 
sequence. However, not all hackers are equally efficient. Although some 
follow the cyber kill chain sequentially, others act chaotically, jumping 
from phase to phase until they eventually might stumble upon a solu-
tion. To better understand the decision making process of offenders in 
cyberspace and the factors associated with it, we developed and 
pre-registered a novel research design to address the following research 
question: 

What is the relationship between individual hacking expertise and 
hacking efficiency? 

3.1. Hypotheses 

The expertise paradigm (Nee et al., 2019) suggests that those in-
dividuals who have experience in performing a specific task will perform 
it more efficiently as they automate part of the process (e.g., Nee & 
Meenaghan, 2006). A study showing that higher IT skills may be posi-
tively related with the commission of the more technical offenses, such 
as hacking (Weulen Kranenbarg, Holt, & van Gelder, 2019), provides 
indirect evidence for this relationship. Individuals with more hacking 
experience and skills might better understand the structure of the 
website, its hosting, the software it uses, and what vulnerabilities it has 
as a result. It is possible that the most expert hackers already possess—or 
know where to find—the information needed to execute the hack, which 
would help them move up the kill chain. Experts would then navigate 
hacking-related websites and acquire the right information from them 
with more ease than novices due to greater awareness and expertise. 
This reasoning leads us to formulate the following two hypotheses: 

H1: IT students with hacking experience will conduct more efficient 
attempts to hack a target website. 

H2: IT students with more IT skills will conduct more efficient at-
tempts to hack a target website. 

3.2. Pre-registration 

In line with open science practices, and to prevent HARKing (i.e., 
hypothesizing after the results are known) and p-hacking (i.e., manip-
ulating analysis to achieve statistical significance), we pre-registered the 
present study. The study was pre-registered in the Open Science 
Framework (OSF) in April 2022, after the data were collected and the 
distribution of the variables was reported in a codebook, but before 
conducting the analyses presented in this manuscript. For details, see the 
pre-registration. 

3.3. Ethical considerations 

This research was reviewed by the Ethics Committee for Legal and 
Criminological Research (CERCO) in April 2021. After making some 
minor remarks regarding the content of the informed consent and the 
challenges of conducting research during COVID-19 times, the com-
mittee declared no ethical concerns. 

4. Methods 

Using the facilities of The Hague University of Applied Sciences, we 
prepared a computer lab to collect a range of objective and subjective 
measures from participants through their participation in a two-part 
study: a website defacement challenge,3 and an online questionnaire 
about online behavior and IT knowledge. 

4.1. Participants 

For this study we intended to recruit a sample that resembled as 
closely as possible a sample of young hackers. A recent review of 23 
studies on the characteristics of cybercriminals concludes that most are 
young, highly educated males (Edwards, Williams, Peersman, & Rashid, 
2022). That is why we recruited participants from technical programs at 
The Hague University of Applied Sciences—students of IT security and 
computer engineering—through an advertisement distributed online by 
their teachers. Participants were incentivized with €10 for their partic-
ipation in the form of an online store gift-card, raised to €20 if they 
hacked and defaced the target website. To participate in the study, 
participants had to sign an informed consent. We recruited 72 partici-
pants and, after excluding two participants (ID = QAKJ7y, V7DwJe) for 
failing to record their data correctly and one participant (ID = dDz2Dd) 
for speeding during the questionnaire (completed in 2.5 min), collected 
valid data from 69 in seven sessions split over two days in September 
2021. Participants had a mean age of 21 years (SD = 2.8) and were 
mostly male (94.2%). 

4.2. The computer lab 

The lab is maintained by university staff and consists of two adjacent 
computer rooms with 26 and 28 computers respectively. About half of 
the computers were made available in an attempt to distribute partici-
pants evenly across the rooms. All computers had the same specification 
and ran on Windows 10. The computers were connected to the Internet 
and, using Oracle Virtual Machine VirtualBox version 6.1.18, incorpo-
rated two virtual machines (VMs) each on a host-only network. A system 
snapshot was preserved for both VMs, allowing the virtual environment 
to be manually restored to the initial state of the challenge at the end of 
each session. The first VM was an Ubuntu 20.04.2 Live Server (amd64) 
and had installed WordPress version 5.7.2, a popular open-source con-
tent management system. This VM was used to host the target website. 
The second VM was a default Kali Linux machine, a Debian-derived 

3 Such challenges are commonly known as capture-the-flag exercises in cyber 
security training (see Cowan, Arnold, Beattie, Wright, & Viega, 2003). 
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Linux distribution designed for digital forensics and penetration testing. 
To monitor participants and collect objective behavioral measures we 
installed the monitoring software Actual Keylogger on each computer. 

4.3. Study design 

In the first part of the exercise, participants were assigned to their 
own computer and took part in a 1-h monitored capture-the-flag exercise 
in which they were asked to deface the target WordPress website that 
was hosted in the first VM. One way to do this was, for example, to 
obtain the administrator’s password by exploiting a vulnerability. As the 
website was created by one of the researchers and hosted in a controlled 
environment, this was a harmless task. The website was made vulner-
able by.  

• allowing all files in the WordPress folder to be read by any user; 
• setting a very short administrator’s password, which could be ob-

tained by performing a dictionary attack—an efficient type of brute 
force attack—on the login page of the website;  

• having an unencrypted backup of the administrator’s password 
stored in the machines folder structure, which could be reached 
using the remote code execution vulnerability in the (installed) 
WordPress Plugin wpDiscuz 7.0.4. 

Following the kill chain, we present in Table 2 three examples of 
intrusions that would exploit each of the vulnerabilities. Note that 
participants were not asked to erase their digital traces as part of the 
exercise, so such concealing behaviors we would expect from expert 
hackers are outside the scope of the study. 

In the second part, an online questionnaire designed with 

LimeSurvey was administered to collect additional individual measures 
from participants. We assigned each participant a unique identifier, 
which allowed us to link the data they generated during both exercises. 

4.4. Data 

The monitoring software allowed us to accurately capture the ac-
tivity of the participants during the capture-the-flag exercise (Fig. 1), 
including the keystrokes introduced and their source. Keystrokes 
included keyboard keys and mouse buttons. Keyboard keys can produce 
character strings like “words”, and special keys like ‘control’ (< Ctrl >), 
‘enter’ (< Enter >), or ‘backspace’ (< BkSp >). The source of the key-
strokes indicates where they were entered, usually an application, a URL 
or an IP. It is therefore possible to precisely reconstruct the text gener-
ated by the participants with the keyboards in a given context, such as a 
search query in a web browser or an instruction in a network mapping 
application, even if the participants made a typing mistake that they 
later corrected. A limitation of the monitoring software is that it does not 
collect keystrokes introduced in the Kali Linux VM, so we had to 
manually collect all commands introduced in the Kali Linux command 
prompt using the ‘history’ command. The commands were then saved as 
a. txt file. After processing and cleaning the data, we identified 2881 
unique keystrokes, 1073 (37.2%) of which were commands from the 
Kali Linux command prompt. 

With the online questionnaire we collected participants’ socio- 
demographic information, online routine activities, self-reported 
cyber-offending and victimization experiences, objective IT skills, and 
asked whether participants sought external help to complete the task. 
We also collected data on the time participants took to complete the 
questionnaire. The data analyzed contain observations from 69 partic-
ipants across 23 variables. 

4.5. Measures 

In theory, the most direct measure of hacking efficiency would be the 
time it takes for a participant to deface the website. However, within the 
time constraints of the capture-the-flag exercise, only one of the par-
ticipants succeeded (ID = uzSQ9H). So, instead, we looked at the 
sequence of actions they took to hack the website using the cyber kill 
chain as a reference. The main outcome variable is therefore the hacking 
efficiency shown by participants while performing the capture-the-flag 
challenge as captured by the monitoring software. The two main pre-
dictors are the objective IT-skills of participants and their hacking 
experience. These two measures were collected using the online ques-
tionnaire based on that of Weulen Kranenbarg, Ruiter, & van Gelder, 
2021. 

4.5.1. A hacking efficiency index 
Since only one participant hacked the website, we cannot compare 

successful participants and then calculate who was fastest to determine 
their efficiency. We can, however, examine the sequence of steps they 
took and how far they got according to the cyber kill chain, defined as “a 
systematic process to target and engage an adversary [in this case a 
website] to create desired effects” (Hutchins et al., 2011, p. 4). To 
identify how far the participants got in the kill chain, we asked two IT 
security experts to annotate each keystroke according to one of the 
phases of the kill chain or indicate ‘unclear’ if they were not sure. The 
experts, who were technical security instructors at the same institution 
where the participants were studying, taught courses on topics like cyber 
operations—focusing on the fundamentals of pentesting and SOC ana-
lysis—and were therefore well aware of the capabilities of the partici-
pants. Because of this knowledge, the experts were in an advantageous 
position to understand the participants’ hacking process. To facilitate 
the annotation task, we provided the experts with a graphical user 
interface created with Visual Basic for Applications in a Microsoft Excel 
macro-enabled spreadsheet along with detailed instructions on how to 

Table 2 
Three examples of the cyber kill chain exploiting the vulnerabilities in the target 
WordPress website.  

Phase Label Sequence 1 Sequence 2 Sequence 3 

1 Reconnaissance Identifying 
that the 
website is 
built in 
WordPress 
and its file 
structure. 

Finding the 
login page of 
the WordPress 
website and 
any potential 
users. 

Identifying the 
version of 
wpDiscuz plugin 
in the WordPress 
website and its 
vulnerabilities. 

2 Weaponization Writing a 
malicious 
script that 
leverages the 
fact that no 
permissions 
are required 
to read the 
file. 

Using a 
dictionary 
attack tool to 
guess the 
administrator 
password. 

Crafting a 
payload to 
exploit the 
remote code 
execution 
vulnerability. 

3 Delivery Uploading the 
script to the 
website’s 
WordPress 
directory. 

Launching the 
dictionary 
attack on the 
login page. 

Injecting the 
payload into the 
website. 

4 Exploitation Executing the 
script to read 
sensitive files, 
like the one 
containing 
the password. 

Gaining 
unauthorized 
access to the 
WordPress 
admin panel. 

Executing the 
payload to 
retrieve the 
unencrypted 
backup with the 
administrator’s 
password. 

5 Installation Modifying the theme file to ensure persistence, and 
embedding the script. 

6 Command and 
control 

Establishing a hidden communication channel between 
the compromised website and the attacker’s server via a 
backdoor. 

7 Actions on 
objectives 

Defacing the website, and using the website to launch 
further attacks like spreading malware or stealing user 
data.  
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carry out the task. Such instructions included the definition of each of 
the phases of the kill chain, a description of the keystroke data, and a 
user manual for the interface. 

We then assessed the degree of agreement between the two experts 
with the inter-rater reliability score produced by Krippendorff’s alpha 
(Krippendorff, 1970). The alpha showed little to no agreement between 
the raters (α = 0.067). As we anticipated a large amount of uncertainty 
on the part of the experts, we pre-registered a rule to favor certainty over 
uncertainty. In the event that one of the two experts was unable to 
classify the commands or keystrokes according to one of the categories 
of the kill chain (i.e., indicated “Unclear”), the opinion of the expert who 
classified them prevailed. Disagreements between the two experts were 
then resolved by a third expert, who was the head of their research 
group. 

This process revealed 146 sequences distributed among 69 partici-
pants (Fig. 2). Note that each time participants opened a new instance of 
the Kali Linux command prompt to execute commands we had to record 
their keystrokes as an independent sequence because the command line 
keystrokes are not time-stamped and therefore cannot be joined to the 
rest of the keystrokes in a timeline. For this reason, 48 (69.6%) 

participants produced more than one sequence—up to a maximum of 6 
(M = 1.9; SD = 1.1). 

Based on the sequences, we claim that the hacking efficiency of the 
participants should be considered higher in relation to the kill chain 
when they:  

• reach more phases;  
• repeat fewer phases, and/or  
• go forward more often than backwards. 

These conditions can be measured using sequence analysis. We used 
the TraMineR R package (Gabadinho, Ritschard, Müller, & Studer, 
2011) to calculate three indicators per sequence and participant. The 
first indicator was the proportion of visited states (Brzinsky-Fay, 2007), a 
numeric value normalized to range from 0 to 1 that measures how far 
participants got in the kill chain. The second was an inverted version of 
the recurrence index (Pelletier, Bignami-Van Assche, & Simard-Gendron, 
2020), a numeric value normalized to range from 0 to 1 that measures 
how often participants took a step backwards in the kill chain. The third 
was the degradation index (Ritschard, 2021), a numeric value normalized 

Fig. 1. Participants’ activity during the 1-h exercise.  
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to range from 0 to 1 that measures phase transitions in the right direc-
tion. Since the order of the phases does not matter to calculate the 
proportion of visited states, but it does matter to calculate the recurrence 
and degradation indicators, we calculated the first by aggregating all 
sequences per participant, while we calculated the other two on each 
individual sequence and then averaged them per participant. 

We then explored whether combining these factors into a single ef-
ficiency construct would yield meaningful results. To do so, we simu-
lated sequences, conducted bivariate analyses, and theorized several 
scenarios (Appendix A). The analyses revealed that there is a statistically 

significant and negative relationship between inverted recurrence and 
sequence length that disappears when accounting for sequence length. 
This suggests that these efficiency indicators should not be combined 
into one unless controlling for sequence length. So, we decided to 
deviate from the pre-registration and add sequence length (i.e., the sum of 
the length of all sequences produced by each participant) to our control 
variables, and combine all efficiency indicators into a single outcome 
variable. Therefore, the hacking efficiency index is a normalized average 
value of the three efficiency indicators, ranging between 0 and 1, where 
higher values represent higher efficiency. TraMineR uses Optimal 

Fig. 2. Participants’ hacking sequences according to the phases of the cyber kill chain.  
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Matching (Abbott & Forrest, 1986) to work with sequences of different 
lengths. 

To demonstrate the performance of the index, Fig. 3 scores the effi-
ciency of six synthetic sequences of different lengths that represent 
extreme theoretical scenarios. The best scenario represents a sequence of 
seven phases corresponding to those of the kill chain. This sequence has 
the maximum proportion of visited states, the minimum recurrence, and 
the minimum degradation. It obtains, therefore, a normalized efficiency 
score of 1. In contrast, the worst scenario represents a sequence whose 
properties result in an efficiency of 0. Fig. 3 then shows three sequences 
representing the least efficient scenarios with respect to each of the three 
efficiency indicators: a sequence with the minimum proportion of visited 
states (lowest normalized proportion of visited states = 0); a sequence with 
maximum recurrence (lowest normalized inverted recurrence = 0), and a 
sequence with the maximum degradation (lowest normalized degradation 
= 0). Finally, it displays a sequence that combines 7 phases randomly 
sampled from our data. In these examples, the maximum recurrence 
scenario also happens to be the least efficient. 

Fig. 4 shows the distribution of the three efficiency indicators, and 
the hacking efficiency index using the participants’ sequence data. 

4.5.2. Objective IT-skills 
We use the IT-skills test developed by Weulen Kranenbarg, Ruiter, & 

van Gelder, 2021 to measure the objective IT skills of participants. The 
test is based on other online tests and was adapted with the assistance of 
the Team High Tech Crime of the Netherlands Police. It consists of 10 
items with 5 response options each, including “I don’t know”. To prevent 
participants from searching for answers on the Internet, we added a 
timer of 45 s to each question. Correct answers scored 1 point, while 
incorrect ones subtracted 0.25. Answering with “I don’t know” or not 
answering, neither added nor subtracted. Scores could therefore range 
from − 2.5 to 10 points. Fig. 5 shows the distribution of the participants’ 
scores. 

4.5.3. Self-reported hacking experience 
We used the same questions as Weulen Kranenbarg, Holt, & van 

Gelder, 2019 to collect a series of self-reported hacking measures from 
participants. They were asked how often in the past 12 months they had 
engaged in the following five hacking behaviors without permission.  

• breaking into or logging in to a network, computer or web account by 
guessing the password; 

• gaining access in another way to a network, a computer, a web ac-
count or files stored on it;  

• taking over a network, computer or web account;  
• changing the content of a website or an online profile; and  

• deleting, adding, damaging or modifying someone else’s computer 
files. 

The question was presented as a matrix, and to facilitate under-
standing the behaviors, each type of hacking was presented as a brief 
description of a behavior with examples rather than a name or formal 
definition. For example, we asked “How often in the past twelve months did 
you ‘break into or log in to a network, computer or web account by guessing 
the password’ without permission?” Response options ranged from “0 
times” to “5 or more”, with the additional option of “I don’t know”. Due 
to the right-skewed distribution of the variable, we also decided to 
dichotomize it between 0 times (no experience) and at least one time 
(experience). Fig. 6 shows the variable distribution in its continuous and 
dichotomous version, and indicates that one quarter of the participants 
had at least some hacking experience. 

4.5.4. Control variables 
As control variables, we included an integer numerical measure of 

the age of the participants, a dichotomous measure of whether the area 
of their highest completed education is informatics and IT, or any other 
area as a reference category, and an integer numerical measure of the 
length of the sequences produced by the participants (Fig. 7). A recent 
quasi-experiment using virtual environments suggests that older bur-
glars conduct more efficient searches than younger burglars (Meena-
ghan et al., 2023). In the context of this study, it is possible that older 
participant have had more time to develop their IT skills, have more 
hacking experience and, therefore, are more efficient. The same ratio-
nale applies to those participants who have studied informatics and IT. 
In Appendix A we showed that the relationship between the efficiency 
indicators and the efficiency index varies as a function of sequence 
length—to the point of changing direction. Therefore, we deviated from 
the pre-registration and controlled for sequence length. In the prereg-
istration, we also considered controlling whether participants sought 
outside help during the capture-the-flag exercise, but decided not to do 
so because we considered it endogenous to efficiency and in order to 
keep the model as parsimonious as possible. 

4.6. Analytic strategy 

In the preregistration we indicated that we would perform a confir-
matory factor analysis to test whether the three indicators of hacking 
efficiency belonged to the same latent construct and, if not, we would 
model each indicator separately. Finally, we decided not to perform this 
analysis and to fit an ordinary least squares (OLS) regression model to a 
single outcome variable for the sake of interpretability. Thus, we 
examined the relationship between the predictors (i.e., IT skills, and 
hacking experience) and the outcome (i.e., hacking efficiency), while 

Fig. 3. Example synthetic sequences with efficiency scores.  
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controlling for the age of participants, their IT background, and 
sequence length. We standardized all variables in the model to have a 
mean of zero and a standard deviation of one in order to compare the 
impact of the predictors on the outcome. Appendix B presents the model 
diagnostics. 

Given that we pose directional hypotheses, we use one-tailed sta-
tistical significance tests with the standard threshold in the social sci-
ences (α = 0.05). If we observe a positive and statistically significant 
relationship between hacking experience and the outcome after con-
trolling for the other covariates, we will interpret this as support for H1; 
if we observe a positive and statistically significant relationship between 
IT skills and the outcome after controlling for the other covariates, we 
will interpret this as support for H2. If we find positive associations that 
are not statistically significant, we will not interpret these as support for 
the hypotheses but we will discuss the influence of sample size on the 
results. In any other case, we will reject the hypotheses. Because we use 
a cross-sectional research design, causal inferences are not warranted, so 
any support for the hypotheses will be interpreted with caution. 

5. Results 

The model results are shown in Table 3. Model 1 uses the dichoto-
mous version of hacking experience (as pre-registered), while Model 2 
uses its continuous version. Regarding H1, the results of both models 
show that more IT skills are statistically significantly related to higher 
hacking efficiency. Holding all other variables constant, a one standard 
deviation increase in IT skills corresponds to a 0.44 standard deviation 
increase in efficiency in Model 1, and to a 0.4 in Model 2. Regarding H2, 
more hacking experience is not statistically significantly related to 
higher efficiency in either model. Considering the distance to the sig-
nificance threshold, this may be due to a lack of statistical power. Within 
our sample, a one standard deviation increase in hacking experience 
corresponds to a 0.19 standard deviation increase in efficiency in Model 
1, and to a 0.1 in Model 2. As for the control variables, longer sequence 
length is statistically significantly related to less efficiency in Model 1 
but not in Model 2. A one standard deviation increase in sequence length 
corresponds to about a − 0.19 standard deviation decrease in efficiency 
in both models. Effect sizes for IT skills, hacking experience, and 
sequence length can be considered medium, small, and small respec-
tively (Cohen, 1988). The remaining control variables appear to be 
unrelated to efficiency. 

The coefficients of determination (Adjusted R-squared) indicate that 
these expertise models would explain between 13% and 15% of the 
variance in hacking efficiency. 

6. Discussion 

This pre-registered study tested whether the expertise paradigm (Nee 
et al., 2019) applied to cybercrime commission. For that purpose, we 
recruited a sample of IT security students to participate in an hour-long 
monitored challenge to deface a website made vulnerable by design. At 
the end of the exercise, we collected additional individual measures 

Fig. 4. Distribution of participants’ hacking efficiency indices (a, b, c), and hacking efficiency (d).  

Fig. 5. Distribution of participants’ IT-skills scores.  

Fig. 6. Distribution of participants’ cyber offending and hacking experience.  
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from the participants with an online questionnaire. We then examined 
the relationship between individual hacking experience, measured as 
the combination of hacking experience and IT skills, and hacking effi-
ciency, measured as the sequence of phases of the kill chain followed by 
the participants. The findings suggest that the expertise paradigm may 
hold for potential hackers. In such case, rational choice perspectives 
aiming to explain cybercrime (e.g., Newman & Clarke, 2003) should 
take criminal expertise into account. 

Regarding H1, we found that participants with more objective IT 
skills showed higher hacking efficiency. From an expertise paradigm, 
these domain-specific skills could provide potential hackers with a su-
perior ability to recognize environmental cues that are useful during the 
exercise (Nee & Ward, 2015). This result is consistent with the findings 
of Weulen Kranenbarg, Holt, & van Gelder, 2019, who suggest that there 
is a positive relationship between IT skills and cybercrime offending. 
Regarding H2, however, we did not find a significant association be-
tween having hacking experience and hacking efficiency. Note that this 
result may be due to a lack of statistical power.4 As for the other factors 
examined, we found that older participants did not show greater hacking 
efficiency, which contrasts with the finding that older burglars per-
formed more efficient searches inside houses (Meenaghan et al., 2023). 
It is possible that we did not observe any differences because most 
participants were relatively young. We also found that participants 
whose last completed education was in informatics and IT did not show 
greater hacking efficiency. Another study found that having an IT 

background was not significantly related to cyber offending either 
(Weulen Kranenbarg, Ruiter, van Gelder, & Bernasco, 2018). This sug-
gests that IT skills are also developed outside the educational context, in 
which case peers may have an influence. Finally, in the pre-registered 
model we found that those participants who made more attempts to 
hack the website, measured as more kill chain phases covered, were 
significantly less efficient. 

The study is novel from both a theoretical and methodological 
perspective. First, it links a psychological paradigm used in criminology, 
the expertise paradigm (Nee & Ward, 2015), to a cybersecurity frame-
work, the cyber kill chain (Hutchins et al., 2011), to advance the un-
derstanding of cybercriminal decision making. Second, the study 
proposes a new methodological approach to measure hacking efficiency. 
It uses sequence analysis (Ritschard, 2021)—a type of quantitative 
analysis with many applications in social sciences but seldom used in 
criminology—to measure actual efficiency and not simply self-reported 
metrics. Both innovations take advantage of the interdisciplinary nature 
of criminology. 

6.1. Theoretical contribution 

Following the broader trend of extending social science paradigms to 
explain cybercrime, this study extends the application of the expertise 
paradigm to cyberspace. We conceptualized hacking efficiency as the 
sequence of phases of the cyber kill chain followed during the hacking 
process (Hutchins et al., 2011), and measure it quantitatively using 
sequence analysis (Ritschard, 2021). Here we measure a specific type of 
hack in which both motivation and target location are fixed. In this hack, 
the primary motivation is to commit the crime, but due to the relative 
inexperience of the participants, there is a secondary motivation that is 
preparatory. Since the target was fixed in the vulnerable website, 

Fig. 7. Distribution of participants’ age (a), education (b), and sequence length (c).  

Table 3 
OLS models results.  

Variable Model 1 (dich. hacking experience) Model 2 (cont. hacking experience) 

Std. β [95% CI] One-tailed p-value Std. β [95% CI] One-tailed p-value 

(Intercept) 0.000 [-0.222, 0.222] 0.500 0.000 [-0.225, 0.225] 0.500 
IT skills 0.437 [0.196, 0.678] 0.000 0.400 [0.162, 0.638] 0.001 
Hacking experience 0.186 [-0.05, 0.421] 0.060 0.104 [-0.129, 0.336] 0.189 
Age − 0.012 [-0.243, 0.219] 0.460 0.007 [-0.225, 0.239] 0.476 
IT education − 0.111 [-0.349, 0.127] 0.178 − 0.096 [-0.336, 0.145] 0.215 
Sequence length − 0.193 [-0.422, 0.037] 0.049 − 0.186 [-0.419, 0.047] 0.058 
R-squared 0.214   0.193   
Adjusted R-squared 0.151   0.129    

4 For a significance level of α = 0.05 and a desired power of 0.80, the sample 
size required to detect small (f2 

= 0.02), medium (f2 
= 015), and large (f2 

=

0.35) effect sizes using a generalized linear model (Cohen, 1988), would be 
647, 92, and 43, respectively. 
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participants could only decide how to carry out the hack. If the partic-
ipants had been given complete freedom, as in the case of criminal 
hackers, we might have observed different modus operandi. It is also 
important to note that most criminological research focuses on 
completed crimes and thus overlooks why some attempts might fail, 
which could be useful for crime prevention. This research analyzed data 
from 69 hacking attempts of IT students, and found them to be highly 
chaotic, meaning that a disorganized modus operandi may contribute to 
criminal failure. 

Criminologists pioneered the study of crime as sequences of decisions 
and actions, developing frameworks such as crime scripts (Cornish, 
1993). More recently, cybersecurity developed attack models known as 
kill chains (e.g., Hutchins et al., 2011), which serve as the cyber 
equivalent of crime scripts. Both frameworks have in common that they 
deconstruct the offending process into phases, which contributes to both 
understand its intricacies and identify key disruption points. Here we 
frame kill chains as a hacking process, in which efficiency varies 
depending on how offenders progress along the chain. In this study, we 
argued that progressing linearly along the chain would be the most 
efficient way to hack, but we could not provide direct evidence for this. 
However, by monitoring participants in real time as they attempted to 
hack a website, we did uncover complex sequences of decisions based on 
their behavior that we associated with indicators of hacking efficiency. 
Quantitatively analyzing these sequences revealed differences based on 
the proportion of phases they visit, the phases they repeat, and the 
extent to which they progress along the sequence. This could be the 
initial step to define a typology of hackers based on their hacking effi-
ciency (e.g., efficient, reversed, persistent, careful, chaotic, lucky, stuck, 
inefficient; see Appendix A). 

Our findings suggest that the hacking process does not follow the 
cyber kill chain linearly, but may actually be more chaotic. Attackers 
may navigate back and forth within the kill chain, trying various tech-
niques and looking for new targets until they make tangible progress. 
When attempting to convey simplified offending processes using linear 
models like the cyber kill chain, we misrepresent the crime commission 
process for offenders who do not follow a linear pattern of behavior, 
unintentionally perpetuating biased or unrealistic portrayals of crime. 
Actually observing behavior with methods such as video, virtual reality, 
or monitoring software—rather than presenting a simplified, scripted 
model of crime—can help determine how structured offenders actually 
behave. For example, a study conducted in a virtual environment found 
that inexperienced burglars exhibit chaotic search patterns inside the 
house (Nee et al., 2019). The chaotic nature of cyber offending is also 
acknowledged by the unified kill chain: “advanced attacks can be 
regarded as phased progressions, but individual attack phases may be 
bypassed, occur more than once or occur out of sequence” (Pols, 2023, p. 
14). We found that inexperienced hackers go back and forth during the 
hack, repeating phases of the kill chain, retracing their steps, and even 
skipping some phases that are supposed to be sequential. Such 
non-linear crime commission processes would have implications for 
situational crime prevention (Clarke, 1980). On the one hand, there may 
be recurring steps in which the measures can multiply their effect; on the 
other, there may be steps that do not occur in the expected sequence or 
are outright omitted. This would render the effect of the measures 
limited or null. It is therefore important not only to identify the crime 
steps, but also to weight their importance within the sequence in scripts 
and chains. 

6.2. Limitations 

This study implemented a novel method for monitoring of cyber-
criminal behavior in real time. The combination of capture-the-flag 
exercises and monitoring software allows to collect objective measures 
of online behavior, which are more accurate than self-reported measures 
(Parry et al., 2021), and thus overcome some of the previous research 
limitations. In doing so, however, we encountered unique challenges. 

One of the challenges was recruiting participants for the study, as the 
capture-the-flag task was time consuming and required a hard to find 
hacking skill set. We intended to recruit 100 participants, but in the end 
we got valid responses from 69, which can be considered a small sample 
size. Another challenge was to classify the behavior of the participants 
into kill chain phases. For this purpose, we recruited IT security experts 
and provided them with instructions and a semi-automated tool for the 
classification task. The task proved arduous, as it was sometimes 
possible to classify the same behavior into different categories of the kill 
chain. For example, hitting the ‘a’ key can mean different things. It could 
be an option to ‘use’ or ‘list all’ in a tool, or it could be input to a web 
application. In addition, many of the keystrokes recorded lacked 
context, were not correctly spelled, or were halfway through. This is 
comparable to the challenges of natural language processing, where a 
word may have a different meaning depending on the part of speech it is 
in, where words have to be corrected without knowing the intent of the 
writer, or where incomplete words may result in different words when 
completed. Anticipating a low degree of agreement among the experts, 
we pre-registered a criterion to favor certainty over uncertainty when 
classifying keystrokes, and called on a third expert to resolve disagree-
ments. Overall, the task posed a challenge to the experts that may have a 
direct impact on the results. Future research should consider developing 
more detailed coding schemes and providing training to experts. 

Other limitations were inherent to the keylogger we used. Firstly, the 
keylogger we used did not record the keystrokes that were entered into 
the second VM because it was running the Kali Linux operating system. 
This was an oversight in the piloting phase of the study. To mitigate this 
limitation, we had to manually collect the commands entered into the 
command line of this VM. These keystrokes were ordered sequentially, 
but did not have a time stamp, which prevented us from being able to 
merge them with the rest of the keystrokes. We opted to create distinct 
sequences for these commands instead. This solution had no impact on 
measures such as proportion of visited states or sequence length, but 
likely affected others such as recurrence and degradation. Although 
command line keystrokes are arguably the most relevant, it is important 
to note that in the second VM we did not log keystrokes entered in other 
applications. As a result, the analyzed sequences were incomplete. 
Secondly, we operationalized each stage of the kill chain by analyzing 
sets of keystrokes originating from the same program, as identified by 
the keylogger. Typically, these sets of keystrokes conclude with a mouse 
click or the enter key, indicating an instruction to the computer. We 
considered this criterion to be appropriate for this study. However, it is 
possible to interpret several instructions as part of the same phase, 
potentially grouping several phases together. Alternatively, a temporal 
criterion could be employed to operationalize a phase (i.e., the set of 
actions performed every 30 s). In such cases, it could be challenging to 
classify multiple actions into a single phase, as they may correspond to 
several phases simultaneously. The challenge for the researchers lies in 
defining the unit of analysis in sequences of actions, such as the crime 
commission process. 

Finally, our model is limited in accounting for predictors of hacking 
such as self-control and peer influence, commonly found in the crimi-
nological literature (e.g., Holt, Bossler, & May 2012). The effect of 
self-control may be especially relevant in criminal hackers, while peer 
influence plays an important role in hacking communities. It is possible 
that self-control influences factors such as concentration and patience, 
which would in turn affect decision making. For example, hackers with 
lower self-control may follow the kill chain more chaotically than those 
with high self-control. On the other hand, we considered including a 
peer influence variable that measures the solicitation of external help 
during the hacking exercise, but we discarded the possibility after 
reasoning that it was endogenous to efficiency, since it would be part of 
resource management. Aside from possible parsimony problems, it is 
possible that these variables would have increased the explanatory 
power of our hacking expertise model. 
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6.3. Future research directions 

Since this is the first study of its kind, we anticipate many future lines 
of research. Regarding theory, it is crucial to investigate the applicability 
of paradigms such as Expertise, which were originally conceived for 
traditional criminals, in the context of cybercriminals. Current research 
is uncovering similarities and differences between these two types of 
offenders (Weulen Kranenbarg, Ruiter, van Gelder, & Bernasco, 2018, 
Weulen Kranenbarg, Holt, & van Gelder, 2019, Weulen Kranenbarg, 
Ruiter, & van Gelder, 2021), which could be crucial in determining 
whether current criminological theories can explain cybercrime or 
whether new ones are needed. Regarding methods, it would be inter-
esting to explore the possibility of combining kill chains (Hutchins et al., 
2011) with crime journeys (Bernasco, 2014) and crime scripts (Cornish, 
1993) to obtain an integrated analytic framework useful for social sci-
ences and computer sciences. This would make findings comparable 
across disciplines. In addition, it would be useful to develop a process, 
either automated (e.g., machine learning) or manual (e.g., coding 
scheme) to improve the classification of online behaviors into kill chain 
phases. Regarding research design, other types of capture-the-flag ex-
ercises would allow the study of other cybercrime types in which, for 
example, the type of crime is different, or the target is not fixed in 
advance. In addition, having participants perform a hacking task until 
they succeed or give up would allow to examine the crime-comission 
process without the time pressure imposed by our research design. 
Studies in computer labs are ideal for testing experimental conditions 
related to criminological theory such as the Rational Choice Perspective 
(Clarke & Cornish, 1985), since they would allow manipulation of 
conditions such as the effort made during the crime or the rewards ob-
tained at the end. Regarding samples, more expert hackers, whether 
criminal or ethical, should be recruited to increase the internal validity 
of the findings. Larger samples would increase the statistical power, 
which in turn would increase the reliability of the findings. In sum, this 
study has the potential to spearhead a field of research that could ach-
ieve several breakthroughs. 

More broadly, our findings show that the process of crime commis-
sion may not be as linear as previously thought, but rather quite disor-
derly. This invites the wider criminological audience to assess whether 

sequence analysis (Ritschard, 2021) can contribute to the advancement 
of the discipline by showing how crime actually unfolds. 
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Appendix A. Simulated sequence scenarios 

In this section we examine in depth how the hacking indicators combine to produce the hacking efficiency index. To do so, below we simulate data, 
analyze it and examine different theoretical scenarios. 

Since we suspected that sequence length might change the way the indicators relate to each other, which would directly affect the interpretability 
of the index, we simulated all possible combinations of kill chain phases for all sequences of up to seven phases (7+ 72 + 73 + 74 + 75 + 76 + 77 =

960,799) and drew a random sample of 1050 observations with replacement, clustered by sequence length, to experiment with. The combination of 
the three indicators, based on their highest and lowest possible values, can result in eight possible theoretical scenarios of efficiency. For reference, we 
named each scenario in Table 4 and ranked them according to how many efficiency conditions they meet.  

Table 4 
Theoretical scenarios resulting from the combination of the three efficiency indicators  

Scenario Normalized proportion of visited states Normalized inverted recurrence Normalized degradation Label Efficiency conditions met 

1 high high high efficient 3 
2 high high low reversed 2 
3 high low high persistent 2 
4 low high high careful 2 
5 high low low chaotic 1 
6 low high low lucky 1 
7 low low high stuck 1 
8 low low low inefficient 0  

Fig. 8 shows the pairwise correlation and plot matrix between the three efficiency indicators, the efficiency index, and the sequence length. The 
diagonal shows the distribution of each variable using a kernel density estimator. We note a significant negative correlation between normalized 
proportion of visited states and normalized inverted recurrence (r = − 0.347; p ≤ 0.001), suggesting the three efficiency indicators should not be 
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combined into a single construct. This relationship disappears when removing sequences shorter than three phases (r = − 0.009; p = 0.814), and even 
flips when removing sequences with no recurrence (r = 0.538; p ≤ 0.001) or sequences shorter than four phases (r = 0.212; p ≤ 0.001). Note that any of 
these three conditions is present in 64.1% of the sample analyzed. We also found a positive and significant correlation between sequence length and 
normalized efficiency suggesting that we should adjust for sequence length to account for efficiency.

Fig. 8. Theoretical relationship between the three efficiency indicators, sequence length, and efficiency.  

We then proceeded with the full set of sequences to explore the correspondence between the efficiency of the simulated observations and the 
theoretical scenarios. We operationalized the high and low conditions of each indicator using a quantitative criterion. We considered indicators with 
values ≥ 0.5 as high and indicators with values < 0.5 as low. For example, reversed scenarios should have a normalized proportion of visited states 
value ≥ 0.5, a normalized reversed recurrence value ≥ 0.5, and a normalized degradation value < 0.5. This strategy allowed us to assign each 
observation to a theoretical scenario and examine the distribution. Table 5 shows the distribution of all possible scenarios along with the efficiency 
index. Because of how the indicators covary (Fig. 8), it turns out that not all theoretical scenarios are possible. The persistent and chaotic scenarios are 
impossible. In line with our conceptualization, we observed that more theoretically efficient scenarios are also associated with a higher efficiency 
index.  

Table 5 
Distribution and mean efficiency of the six possible theoretical scenarios    

Distribution Normalized efficiency 

Scenario Condition n % Min. Mean SD Max. 

efficient Visitp≥0.5; Recu≥0.5; Degrad≥0.5 277,124 28.843 0.479 0.596 0.088 1.000 
reversed Visitp≥0.5; Recu≥0.5; Degrad <0.5 231,916 24.138 0.320 0.524 0.081 0.780 
careful Visitp <0.5; Recu≥0.5; Degrad≥0.5 184,884 19.243 0.239 0.462 0.087 0.789 
lucky Visitp <0.5; Recu≥0.5; Degrad <0.5 129,157 13.443 0.201 0.375 0.067 0.561 
stuck Visitp <0.5; Recu <0.5; Degrad≥0.5 86,844 9.039 0.014 0.305 0.063 0.451 
inefficient Visitp <0.5; Recu <0.5; Degrad <0.5 50,874 5.295 0.000 0.243 0.061 0.324  

Appendix B. Model diagnostics and robustness checks 

Fig. 9 shows the model diagnostics of the two OLS models for—from left to right—linearity, normality, and influential values. The somewhat 
horizontal red line in the “Residual vs Fitted” plots shows that the relationship between the predicted values and the residuals may be linear. This 
suggests that a generalized linear model like OLS may therefore be a good approach to model such a relationship. The distribution of observations 
along the dashed line in the “Normal Q-Q” plots shows good alignment between the distribution of theoretical quantiles and standardized residuals, 
suggesting that the models meet the assumption of normality. The dashed lines in the “Residuals vs Leverage” plot show the threshold to determine if 
there are any outliers that may influence the model results. In the first model, observations 10, 26, and 68 may be considered outliers but not 
influential, whereas in the second model three observations, 10, 26, and 60 may be considered outliers but again not influential. 
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Fig. 9. Diagnostics of linearity, normality, and influential values for the OLS models (model 1 above; model 2 below).  

In addition to assessing whether the observations in our sample can be considered influential with Cook’s distance, we computed DFBETAS. 
DFBETAS serve to quantify change in the regression estimates when each observation is individually excluded from the analysis. When the change is 
greater than a threshold determined by 2/

̅̅̅
n

√
, the excluded observation can be considered influential (Belsley, Kuh, & Welsch, 1980). Fig. 10 shows 

the DFBETAS that exceed this threshold, which correspond to 16 observations.

Fig. 10. DFBETAS and thresholds for influential values.  

To determine the impact of these influential values on the model estimates, we performed an additional robustness check. Fig. 11 shows the 
estimates of the full models, as well as those of the 16 models in which we remove one of the influential observations at a time. As can be seen, the 
observations considered influential by the DFBETAS are in fact not so, as the variance of the standardized betas and their 95% CI is minimal in all 
cases. These results suggest that the results presented in models 1 and 2 are robust. 
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Fig. 11. Model estimates with and without influential observations.  
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victimization by website defacement: An empirical test of premises from an 
environmental criminology perspective. Computers in Human Behavior, 126. https:// 
doi.org/10.1016/j.chb.2021.106984 

Nee, C., Gelder, J.-L., Otte, M., Vernham, Z., & Meenaghan, A. (2019). Learning on the 
job: Studying expertise in residential burglars using virtual environments. 
Criminology, 57(3), 481–511. https://doi.org/10.1111/1745-9125.12210 

Nee, C., & Meenaghan, A. (2006). Expert decision making in burglars. British Journal of 
Criminology, 46(5), 935–949. https://doi.org/10.1093/bjc/azl013 

Nee, C., & Ward, T. (2015). Review of expertise and its general implications for 
correctional psychology and criminology. Aggression and Violent Behavior, 20, 1–9. 
https://doi.org/10.1016/j.avb.2014.12.002 

Newman, G. R., & Clarke, R. V. (2003). Superhighway robbery: Preventing e-commerce 
crime. Cullompton: Willan.  

Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & 
Quintana, D. S. (2021). A systematic review and meta-analysis of discrepancies 
between logged and self-reported digital media use. Nature Human Behaviour, 5(11), 
1535–1547. https://doi.org/10.1038/s41562-021-01117-5 

Pelletier, D., Bignami-Van Assche, S., & Simard-Gendron, A. (2020). Measuring Life 
course Complexity with Dynamic sequence analysis. Social Indicators Research, 152 
(3), 1127–1151. https://doi.org/10.1007/s11205-020-02464-y 

Pols, P. (2023). The unified kill chain. Raising resilience against advanced cyber attacks. 
Retrieved from https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain. 
pdf. 

Ritschard, G. (2021). Measuring the nature of individual sequences. Sociological Methods & 
Research, Article 004912412110361. https://doi.org/10.1177/ 
00491241211036156 

Romagna, M. (2020). In T. J. Holt, & A. M. Bossler (Eds.), Hacktivism: Conceptualization, 
techniques, and Historical View. Cham: Springer International Publishing. https://doi. 
org/10.1007/978-3-319-90307-1_34-1.  

Topalli, V., Jacques, S., & Wright, R. (2015). “It takes skills to take a car”: Perceptual and 
procedural expertise in carjacking. Aggression and Violent Behavior, 20, 19–25. 
https://doi.org/10.1016/j.avb.2014.12.001 

A. Moneva et al.                                                                                                                                                                                                                                

https://doi.org/10.2307/204500
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref2
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref2
https://doi.org/10.1002/0471725153
https://doi.org/10.1002/0471725153
https://doi.org/10.1093/oxfordhb/9780199935383.013.49
https://doi.org/10.1093/oxfordhb/9780199935383.013.49
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref5
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref5
https://doi.org/10.1093/esr/jcm011
https://doi.org/10.1093/esr/jcm011
https://doi.org/10.4324/9781315044408-8
https://doi.org/10.1080/01639625.2022.2059417
https://doi.org/10.1080/01639625.2022.2059417
https://doi.org/10.1093/oxfordjournals.bjc.a047153
https://doi.org/10.1093/oxfordjournals.bjc.a047153
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref10
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref10
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref11
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref11
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref12
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref13
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref13
https://doi.org/10.1109/DISCEX.2003.1194878
http://arxiv.org/abs/2202.07419
https://doi.org/10.4324/9781843929338.ch9
https://doi.org/10.4324/9781843929338.ch9
https://doi.org/10.18637/jss.v040.i04
https://doi.org/10.1080/01639620601131065
https://doi.org/10.1080/01639620601131065
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref19
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref19
https://doi.org/10.1007/978-3-319-78440-3_31
https://doi.org/10.1007/978-3-319-78440-3_31
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref21
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref21
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref21
https://doi.org/10.1080/01639625.2020.1825915
https://doi.org/10.1080/01639625.2020.1825915
https://doi.org/10.1093/bjc/azu106
https://doi.org/10.1093/bjc/azu106
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref24
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref24
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref24
https://doi.org/10.1007/978-3-319-78440-3_36
https://doi.org/10.1007/978-3-319-78440-3_36
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1007/s12117-022-09448-z
https://doi.org/10.1007/s12117-022-09448-z
https://doi.org/10.1146/annurev-criminol-032317-092057
https://doi.org/10.1146/annurev-criminol-032317-092057
https://doi.org/10.1007/s12117-023-09496-z
https://doi.org/10.1007/s11292-023-09573-x
https://doi.org/10.1007/s11292-023-09573-x
https://doi.org/10.1016/j.chb.2021.106984
https://doi.org/10.1016/j.chb.2021.106984
https://doi.org/10.1111/1745-9125.12210
https://doi.org/10.1093/bjc/azl013
https://doi.org/10.1016/j.avb.2014.12.002
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref35
http://refhub.elsevier.com/S0747-5632(24)00048-7/sref35
https://doi.org/10.1038/s41562-021-01117-5
https://doi.org/10.1007/s11205-020-02464-y
https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain.pdf
https://www.unifiedkillchain.com/assets/The-Unified-Kill-Chain.pdf
https://doi.org/10.1177/00491241211036156
https://doi.org/10.1177/00491241211036156
https://doi.org/10.1007/978-3-319-90307-1_34-1
https://doi.org/10.1007/978-3-319-90307-1_34-1
https://doi.org/10.1016/j.avb.2014.12.001


Computers in Human Behavior 155 (2024) 108180

15

Weulen Kranenbarg, M., Holt, T. J., & van Gelder, J.-L. (2019). Offending and 
victimization in the digital age: Comparing Correlates of cybercrime and traditional 
offending-only, victimization-only and the victimization-offending Overlap. Deviant 
Behavior, 40(1), 4055. https://doi.org/10.1080/01639625.2017.1411030 

Weulen Kranenbarg, M., Ruiter, S., & van Gelder, J.-L. (2021). Do cyber-birds flock 
together? Comparing deviance among social network members of cyber-dependent 
offenders and traditional offenders. European Journal of Criminology, 18(3), 386–406. 
https://doi.org/10.1177/1477370819849677 

Weulen Kranenbarg, M., Ruiter, S., van Gelder, J.-L., & Bernasco, W. (2018). Cyber- 
offending and traditional offending over the Life-Course: An empirical comparison. 
Journal of Developmental and Life-Course Criminology, 4(3), 343–364. https://doi.org/ 
10.1007/s40865-018-0087-8 

Wieren, M. van, Doerr, C., Jacobs, V., & Pieters, W. (2016). In G. Livraga, V. Torra, 
A. Aldini, F. Martinelli, & N. Suri (Eds.), Understanding Bifurcation of slow versus fast 
cyber-Attackers. Cham: Springer International Publishing. Retrieved from http://link. 
springer.com/10.1007/978-3-319-47072-6_2. 

Wright, R., Logie, R. H., & Decker, S. H. (1995). Criminal expertise and offender decision 
making: An experimental study of the target selection process in residential burglary. 
Journal of Research in Crime and Delinquency, 32(1), 39–53. https://doi.org/10.1177/ 
0022427895032001002 

Yar, M. (2005). The novelty of ‘cybercrime’: An Assessment in light of routine activity 
theory. European Journal of Criminology, 2(4), Article 407427. https://doi.org/ 
10.1177/147737080556056 

A. Moneva et al.                                                                                                                                                                                                                                

https://doi.org/10.1080/01639625.2017.1411030
https://doi.org/10.1177/1477370819849677
https://doi.org/10.1007/s40865-018-0087-8
https://doi.org/10.1007/s40865-018-0087-8
http://link.springer.com/10.1007/978-3-319-47072-6_2
http://link.springer.com/10.1007/978-3-319-47072-6_2
https://doi.org/10.1177/0022427895032001002
https://doi.org/10.1177/0022427895032001002
https://doi.org/10.1177/147737080556056
https://doi.org/10.1177/147737080556056

	Criminal expertise and hacking efficiency
	1 Introduction
	2 Criminal expertise and the hacking process
	3 The present study
	3.1 Hypotheses
	3.2 Pre-registration
	3.3 Ethical considerations

	4 Methods
	4.1 Participants
	4.2 The computer lab
	4.3 Study design
	4.4 Data
	4.5 Measures
	4.5.1 A hacking efficiency index
	4.5.2 Objective IT-skills
	4.5.3 Self-reported hacking experience
	4.5.4 Control variables

	4.6 Analytic strategy

	5 Results
	6 Discussion
	6.1 Theoretical contribution
	6.2 Limitations
	6.3 Future research directions

	CRediT authorship contribution statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of Competing interest
	Data availability
	Acknowledgements
	Appendix A Simulated sequence scenarios
	Appendix B Model diagnostics and robustness checks
	References


