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Introduction 

Most of the crime and place quantitative methods discussed in this handbook rely on what Ragin 

(1987, 1994) refers to as a variable-oriented approach to research. The goal of a variable-oriented 

approach is to study a small number of independent variables (e.g., the presence or absence of 

crime attractors and/or generators) across a very large number of cases and to identify a 

parsimonious set of causal variables that explain as much variation as possible in the dependent 

variable (e.g., crime hotspots). This is accomplished by constructing a generic representation of 

relationships, based on patterns observed across many cases (e.g., using correlations among 

variables) and reflects an additive-linear view of causation that depends upon strong homogenizing 

assumptions about cases which, in turn, make this approach insensitive to causal complexity. In 

short, the variable-oriented approach to research views causation as a contest between independent 

variables to explain variation in an outcome.  

In contrast, the goal of a case-oriented approach is to examine many aspects of each 

observed case profile and to construct a representation of each individual from the interconnections 

among the aspects of these configurations. This approach views cases as configurations – 

combinations of aspects and conditions – and seeks to understand them at the level of specific 

instance. In this context, causation is viewed as conjunctural and plural (Schneider & Wagemann, 

2012). In other words, causal conditions may combine in different and sometimes contradictory 

ways to generate the same outcome. A case-oriented approach, unlike a variable-oriented 

approach, views causation as often both conjunctural and multiple.  

When applied to multiple cases or instances, the case-oriented strategy addresses a 

relatively small number of cases in an in-depth manner, paying attention to each case as an 

interpretable whole. In essence, this strategy is an extension of the single-case study to multiple 

cases with an eye toward configurations of similarities and differences. In-depth knowledge of 

cases provides the basis for constructing limited generalizations that hold for the cases studied. 

These generalizations may or may not have wider relevance. 

Although much of the existing body of research on crime and place is based on a variable-

oriented approach, our knowledge and understanding of the situational context of crime 

concentration – and other relevant outcomes – can be advanced through case-oriented approaches. 

Conjunctive analysis of case configurations (CACC) is one such technique, bridging the gap 

between the variable-oriented and other case-oriented methodologies. 
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Conjunctive Analysis of Case Configurations 

Conceptual Aspects 

Since Miethe and colleagues (2008) introduced CACC as an exploratory data analysis technique, 

researchers have used this case-oriented approach to improve our understanding of many different 

topics within the field of criminology, including: 

− studies of offender trajectories across the life course (Doherty & Cwick, 2016), 

− reporting crime to police (Rennison, Dragiewicz, & DeKeseredy, 2013), 

− sentencing outcomes in the U.S. (Hart, Miethe, & Regoeczi, 2014) and in Australia 

(Lockwood, Hart, & Stewart, 2015),  

− bullying victimization (Hart, Hart, & Miethe, 2013), 

− risk factors and differential outcomes in carjacking (Miethe & Sousa, 2010), and 

− acts of terrorism (DeLeeuw & Pridemore, 2018; Gruenewald, Klein, Drawve, Smith, & 

Ratcliff, 2019). 

Furthermore, and more relevant to this manual, a growing number of studies have applied CACC 

to crime and place research, including: 

− studies of bystander presence and intervention in nonfatal violent victimizations (Hart & 

Miethe, 2008), 

− ship protection measures used to discourage maritime piracy (Bryant, Townsley, & 

Leclerc, 2014), 

− micro-spatial crime hotspots and the influence of public bus stops on crime patterns (Hart 

& Miethe, 2014, 2015), 

− the spatial concentration of drug activities (Hsu & Mogavero, 2020), 

− the situational contexts of licensed alcohol premises and their influence on crime patterns 

(Newton, 2014), 

− offending and victimization patterns in “virtual places” (Moneva, Miró-Llinares, & Hart, 

2020), and 

− the development of new spatial analytic methods (Summers & Caballero, 2017). 

As mentioned previously, traditional data analysis techniques that are variable-oriented 

methods (e.g., regression or correlation analysis) focus on the explanatory power of predictor 

variables, or the associations between pairs of variables. What these quantitative methods cannot 

do is disentangle the complex causal relationships of combinations of variable attributes and how 

these causal recipes produce particular outcomes – especially when those attributes are considered 

in combination with one another simultaneously.   

CACC was designed to overcome these limitations, by analyzing existing data and building 

composite profiles for a particular unit of analysis (e.g., victims, offenders, guardians, or crime 
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hotspots). The technique is used to understand the complex causal relationships that emerge when 

combinations of variable attributes are present or absent in a particular outcome. CACC has 

evolved over the past decade, from a simple exploratory data analysis technique (Miethe et al., 

2008) to a method that can be used to formally test research hypotheses (Hart, 2019). Application 

of the CACC method is a simple and straightforward process that involves creating a truth table 

or data matrix, populating the truth table with observed data, preparing the table for analysis, and 

formally testing hypotheses related to situational clustering. 

Creating a truth table  

A truth table is constructed from an outcome variable and predictor variables contained in an 

existing data file. The truth table is comprised of all theoretically observable profiles created from 

the predictor variables’ attributes. Each row in the truth table, also referred to as a CACC data 

matrix, represents all possible combinations of variable attributes associated with a particular 

outcome (i.e., the theoretical population of outcomes); columns constitute the specific variables 

used in the analysis.  

Populating the truth table 

Next, each observation contained in the existing data file is aggregated into one of the rows that 

defines the truth table. The truth table is then analyzed to determine the frequency with which a 

specific profile is observed and how often the outcome variable is observed for each case profile. 

Preparing the truth table for analysis 

Decision rules for defining dominant case configurations are applied to the truth table after it is 

constructed and populated. The resulting truth table contains one row for each dominant case 

configuration that is empirically observed in the original existing data file, the number of times it 

was observed, and the proportion of times it yielded the outcome of interest (i.e., the dependent 

variable). 

Testing hypotheses 

Observed patterns among the dominant case configurations contained in the truth table can be 

analyzed and formally tested. Recent methods have been developed to determine whether there is 

significant clustering of the data aggregated to a truth table’s case configurations; and if there is, 

quantifying the magnitude clustering (Esteve, Moneva, & Hart, 2019; Hart, 2019). Techniques for 

examining the main effects that each predictor variable has on the outcome can also easily be 

determined using these recently developed methods (Esteve et al., 2019). 
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Data Requirements 

An existing data file containing observations that are associated with theoretically-relevant 

predictor variables and one outcome variable is needed to conduct CACC. Predictor variables must 

be measured at either the nominal or ordinal level, whereas the outcome variable must be a 

dichotomous variable, coded 0 and 1. The number of observations contained in the existing data 

file should also be considered when selecting the number of predictor variables to use in the 

analysis because the total number of case configurations will define a truth table will be a function 

of the number of predictor variables used in the analysis and the number of attributes associated 

with them.  

For example, if five predictor variables are selected and two of them are have three categories and 

the other three predictors have four categories, then there will be 576 profiles that define the truth 

table (i.e., 32 x 43 = 576). However, if the existing data file used in the analysis contains only 300 

observations, then aggregating them to a truth table with nearly 600 profiles may lead to incorrect 

conclusions about dominant case configurations and/or situational clustering. It is recommended, 

therefore, that the number of observable profiles contained in a truth table not exceed the number 

of observations contained in an existing data file used in the analysis. 

Limitations of CACC 

As with any methodology, CACC is not without certain limitations. One of the most common 

critiques levied against this technique is that it can only be applied to nominal- or ordinal-level 

measures. However, this limitation can easily be overcome through the use of fuzzy sets to define 

group membership (Ragin, 2000, 2006). With fuzzy sets, membership scores can range from 0.0 

(non-membership) to 1.0 (full membership) and cases can vary in the degree to which they satisfy 

membership criteria. Miethe, Troshynski, and Hart (2017) recently demonstrated the use of set-

theoretic methods in CACC to predict national-level imprison rates based on predictors typical 

used in variable-oriented models. This study provides an excellent example of how this perceived 

limitation of CACC can be easily overcome. 

Another shortcoming believed to be associated with CACC is that findings are dataset-

specific and cross-study comparisons of findings are not possible. However, Hart (2019) recently 

introduced a formal test that can be used to determine whether data aggregated to a truth table 

cluster among dominant case configurations more so than expected and a standardized measure of 

the magnitude of situational clustering when it is detected. The formal test and standardized 

measure of situational clustering allow researchers to make cross-study comparisons of CACC 

findings.  

Finally, some critics of CACC suggest findings from configural analysis cannot be 

generalized, because the unit of analysis is changed from the original sample element to case 

configurations. However, this is not a shortcoming of CACC; rather, it is a characteristic of most 

case-oriented methods and how these techniques define populations. Most variable-oriented 
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techniques involve the analysis of data drawn from samples, which are intended to represent 

“given” populations. However, Ragin (2013) argues that relying on analysis based on given 

populations can be problematic because given populations can include irrelevant cases. He further 

suggests that irrelevant cases often correspond to low scores on relevant causal conditions. In other 

words, they inflate correlations and paradoxically can appear to confirm theory, despite being 

irrelevant.  

Findings from CACC are not generalizable, because like most case-oriented methods 

populations are not given; they are constructed. Specifically, populations are built from candidates 

for a qualitative outcome of interest. These candidates include both positive and relevant negative 

cases, which can be identified once their candidacy for the outcome is established (Ragin, 2013). 

Using constructed populations that include both positive and relevant negative cases that explain 

a qualitative outcome, instead of given populations, represent one of the fundamental differences 

between variable- and case-oriented approaches to data analysis. Therefore, to say that the latter’s 

inability to generalize findings is a limitation is a red herring because it fails to understand how 

populations are defined and how this definition impacts generalizability.  

Step-by-step Example 

CACC can be performed with any software that researchers commonly use to analyze data. This 

step-by-step example uses R version 4.0.0 (R Core Team, 2020), RStudio version 1.2.5 (RStudio 

Team, 2019)1, and the cacc R package2 recently developed by Esteve and her colleagues (2019). 

This package automates the construction of a truth table, conducts a formal test of situational 

clustering, calculates a Situational Clustering Index (SCI), and produces a box pot for each 

predictor variable the user wants to analyze. These boxplots show the contextual variability 

associated with each independent variable and the main effect they have on the dependent variable. 

The demonstration that follows uses data provided by the editors of this handbook.  

Data Set  

The data set included for this exercise contain publicly available census data for Washington, DC. 

Information in this file include sociodemographic, block, and crime incident measures. The 

original data were transformed, however, to meet the CACC data requirements discussed 

previously. Specifically, we recoded the variables race_het, p_pov, med_hh_inc, p_move, gas, 

restaurant, and pawn; and used the variables Shape_Area, tot_pop, and crime2018 to create a 

dichotomized outcome variable. Details of these transformations are provided below in Step 3. 
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An Application of the Conjunctive Analysis of Case Configurations (CACC)  

Step 1: Start R and load the cacc package  

The first step in conducting CACC in R is to open RStudio and download the cacc R package file 

from the book resources. Once downloaded, double-click that file and R Studio will open. If you 

open the .R file provided with the book correctly, your screen should look something like this:  

 

Figure 1. RStudio interface with the script for the cacc package 

The R Studio window is divided into four sections. The top-left tab is where the R code 

used in the CACC will appear; it is the code contained in the .R file. In this section, users can make 

changes to this code if needed. The code will not run until the user clicks the word "Run", located 

in the top-right portion of this section or uses the appropriate commands. After the CACC code is 

run, output (including any warnings) will appear in the bottom-left tab of the R Studio window. 

The environment section is located in the top-right tab, and the bottom-right tab lists the packages, 

libraries, and graphical output (i.e., graphs, figures, maps, etc.). 

Before continuing, all the contents of the script must be run in order to prepare all the 

functionalities of the package. To do this, click on the "Run" button and then on the "Run All" 

option in the drop-down menu. Alternatively, simply execute the command Ctrl + Alt + R. All 

cacc functions should now appear on the top-right tab (i.e., cacc(), cacc_xsq(), sci(), 

gg_lorenz_curve(), main_effect(), among others). 
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Step 2: Load packages and import data 

The next step involves installing or loading additional packages for tidying, transforming, and 

visualizing data. In this example, we use three R packages that are part of the tidyverse 

metapackage (Wickham et al., 2019): tidyr (Wickham & Henry, 2020), dplyr (Wickham, 

François, Henry, & Müller, 2020), and ggplot2 (Wickham, 2016). In addition, we use sf 

(Pebesma, 2018). If you do not normally use R, you may not have these packages installed. You 

can install them from the RStudio interface (see the Packages button on the bottom right tab in 

Figure 1) or you can run this line of code instead. 

# Install packages 
install.packages(c("tidyr", "dplyr", "ggplot2", "sf")) 

The cacc script is already prepared for loading these packages. However, in this case, you 

also need sf to import the shapefile with the crime data from Washington. When the packages are 

loaded, the console displays some information about the versions of the attached packages and 

possible conflicts between functions. 

# Load packages 
library(tidyr) 
library(dplyr) 
library(ggplot2) 
library(sf) 

Once the packages are loaded, the data can be imported into R by indicating the file path 

with the following function. Note that you must specify your own path. We named our dataset df. 

When data are imported, the console displays information about the type of data it contains. 

Because sf is a package designed to handle geocoded data, the description provides details on 

such data. 

# Read the Washington shapefile 
df <- st_read(dsn = "path") 

Step 3: Create the truth table 

After the data and the functions are imported, you can proceed with the analysis. CACC can be 

performed on any dataset that meets the data requirements described above, regardless of its 

dimensions; however, it is recommended to reduce its size to only include the variables of greatest 

interest and that are theoretically relevant. In this example, we prepare a truth table comprised of 

seven predictor variables and one outcome variable that define the situational context of crime in 

Washington, DC.  

Fortunately, the dataset provided is already tidy (Wickham, 2014), so we just need to 

transform it to meet the data requirements described previously in Step 1. Data transformation 

involves creating new variables and recode existing ones (Grolemund & Wickham, 2016).  
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First, we create the outcome variable CrimeUpQTL from the CrimeRate variable. The 

CrimeRate variable is a somewhat convoluted variable specific to this exercise, representing the 

2018 crime rate controlling for population density. Here are the five steps we took to create this 

variable. 

# Create the outcome variable: 
df <- df %>% 
  as_tibble() %>% 
  mutate( 
    # 1. Transform the area to square miles; 
    SquareMiles = Shape_Area * 0.000000386102, 
    # 2. Calculate a density measure for the number of people in a Census  
block group, per square mile; 
    PplPerMiles = tot_pop / SquareMiles, 
    # 3. Obtain the crime rate by the population density; 
    CrimeRate = crime2018 / PplPerMiles, 
    # 4. Standardize the variable by multiplying it by '10,000'; 
    CrimeRate = CrimeRate * 10000, 
    # 5. Dichotomize the outcome variable depending on whether the value is  
in the upper quartile or not. 
    CrimeUpQTL = if_else( 
      condition = CrimeRate > quantile( 
        x = CrimeRate, 
        prob = 0.75 
      ), 
      true = 1, 
      false = 0 
    ) 
  ) 

Second, it is necessary to transform the continuous numeric variables (i.e., race_het, 

p_pov, med_hh_inc, and p_move) and the integer numeric predictors (i.e., gas, restaurant, and 

pawn) into categorical variables. You can do this in many ways, but we recommend following a 

justified criterion. For instance, we created three categories for the continuous variables according 

to their distribution using quartile breaks. Integer variables, however, were dichotomized based on 

whether their respective fields indicated the presence or absence of these activity nodes. 

# The continuous numeric variables are categorized depending on their  
distribution (i.e., lower quartile, IQR, and upper quartile). 
df <- df %>%  
  mutate( 
    # Variable 'race_het': 
    RaceHetQTL = if_else( 
      condition = race_het <= quantile( 
        x = race_het, 
        prob = 0.25 
      ), 
      true = 1, 
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      false = if_else( 
        condition = race_het > quantile( 
          x = race_het, 
          prob = 0.75 
        ), 
        true = 3, 
        false = 2 
      ) 
    ), 
    # Variable 'p_pov': 
    PctPvtQTL = if_else( 
      condition = p_pov <= quantile( 
        x = p_pov, 
        prob = 0.25 
      ), 
      true = 1, 
      false = if_else( 
        condition = p_pov > quantile( 
          x = p_pov, 
          prob = 0.75 
        ), 
        true = 3, 
        false = 2 
      ) 
    ), 
    # Variable 'med_hh_inc': 
    MedHhIncQTL = if_else( 
      condition = med_hh_inc <= quantile( 
        x = med_hh_inc, 
        prob = 0.25 
      ), 
      true = 1, 
      false = if_else( 
        condition = med_hh_inc > quantile( 
          x = med_hh_inc, 
          prob = 0.75 
        ), 
        true = 3, 
        false = 2 
      ) 
    ), 
    # Variable 'p_move': 
    PctMvQTL = if_else( 
      condition = p_move <= quantile( 
        x = p_move, 
        prob = 0.25 
      ), 
      true = 1, 
      false = if_else( 
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        condition = p_move > quantile( 
          x = p_move, 
          prob = 0.75 
        ), 
        true = 3, 
        false = 2 
      ) 
    ), 
     
# Then, the integer numeric variables are dichotomized depending on their  
presence or absence. 
    # Variable 'gas': 
    Gas = if_else( 
      condition = gas == 0, 
      true = 0, 
      false = 1 
    ), 
    # Variable 'restaurant': 
    Restaurant = if_else( 
      condition = restaurant == 0, 
      true = 0, 
      false = 1 
    ), 
    # Variable 'pawn': 
    Pawn = if_else( 
      condition = pawn == 0, 
      true = 0, 
      false = 1 
    ) 
  ) 

Finally, the truth table is created by combining the seven predictors and the outcome 

variable into a data frame. Make sure the outcome variable occupies the rightmost column of the 

data frame. This way, the cacc() function will detect it automatically. To verify that all variables 

are correctly categorized, we can summarize their basic descriptive statistics. As shown below, the 

data transformation was successful. 

# Select the seven predictor variables and the outcome variable. 
df <- df %>%  
  select( 
    RaceHetQTL, 
    PctPvtQTL, 
    MedHhIncQTL, 
    PctMvQTL, 
    Gas, 
    Restaurant, 
    Pawn, 
    CrimeUpQTL 
  ) 
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# Explore the truth table 
summary(df) 

##    RaceHetQTL     PctPvtQTL     MedHhIncQTL      PctMvQTL         Gas         
##  Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :1.00   Min.   :0.0000   
##  1st Qu.:1.25   1st Qu.:1.25   1st Qu.:1.25   1st Qu.:1.25   1st Qu.:0.0000   
##  Median :2.00   Median :2.00   Median :2.00   Median :2.00   Median :0.0000   
##  Mean   :2.00   Mean   :2.00   Mean   :2.00   Mean   :2.00   Mean   :0.1489   
##  3rd Qu.:2.75   3rd Qu.:2.75   3rd Qu.:2.75   3rd Qu.:2.75   3rd Qu.:0.0000   
##  Max.   :3.00   Max.   :3.00   Max.   :3.00   Max.   :3.00   Max.   :1.0000   
##    Restaurant          Pawn           CrimeUpQTL     
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   
##  Median :1.0000   Median :0.00000   Median :0.0000   
##  Mean   :0.5444   Mean   :0.01111   Mean   :0.2511   
##  3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.7500   
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000 

Step 4: Apply the cacc functions 

Now that the cacc functions and the truth table are ready, you can conduct CACC. The first 

function that will be used is cacc(), which automates the processes of “populating the truth table” 

and “preparing the truth table for analysis”. This function takes the truth table created in the 

previous step as input and produces a CACC matrix.  

The resulting CACC matrix shows the dominant profiles observed in the existing 

Washington, DC data file, sorted by the likelihood of observing the outcome. Note that since the 

data have less than 1,000 observations, the function has set the threshold of dominant profiles at 

five or more (see Hart, 2014; Hart, Rennison, & Miethe, 2017). With this parameter, this CACC 

reveals 31 dominant profiles in the existing data, as indicated by the table dimensions below. You 

can store the CACC matrix as a separate data frame for further examination and analysis. 

# Conduct a CACC 
cacc_matrix <- cacc(df) 
 
# Examine the CACC matrix 
print( 
  cacc_matrix, 
  # Display the top five rows only 
  n = 5, 
  # Display all columns 
  width = Inf 
) 

## # A tibble: 31 x 9 
##   RaceHetQTL PctPvtQTL MedHhIncQTL PctMvQTL   Gas Restaurant  Pawn N_Break     p 
##        <dbl>     <dbl>       <dbl>    <dbl> <dbl>      <dbl> <dbl>   <int> <dbl> 
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## 1          1         3           1        2     0          1     0      10 0.5   
## 2          2         2           3        3     0          1     0      10 0.5   
## 3          2         1           3        1     0          0     0       7 0.429 
## 4          3         2           2        2     1          1     0       8 0.375 
## 5          3         2           3        2     0          1     0       8 0.375 
## # ... with 26 more rows 

Suppose you want to know whether the observations in your data are disproportionately 

concentrated in a few dominant profiles (i.e., they cluster among dominant case configurations 

more than expected). To test this hypothesis related to the situational clustering of crime, you can 

now apply formal statistical tests on the CACC matrix, as indicated in the “testing hypotheses” 

section. In this demonstration, we introduce the functions cacc_xsq() and sci() to apply the two 

techniques developed by Hart (2019) and the function gg_lorenz_curve() to visualize the SCI 

results.  

First, results of a Chi-square goodness-of-fit test indicate that the observations in our data 

(N = 450) are significantly concentrated among a few dominant profiles that define the CACC 

matrix (X2(30, N = 269) = 66.47, p < .001). Second, the SCI shows that the magnitude of the 

clustering is moderately strong (SCI = .24), as illustrated in Figure 2. In other words, crime is 

moderately concentrated within a few dominant situational profiles that define crime incident 

locations. 

# Chi-square test of independence 
cacc_xsq(cacc_matrix) 

##   X_Square df            p 
## 1  66.4684 30 0.0001418771 

# SCI 
sci(cacc_matrix) 

## [1] "The dataset has been prepared." 

## [1] 0.2357597 

# Plot the SCI results 
gg_lorenz_curve(cacc_matrix) 

## [1] "The dataset has been prepared." 
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Figure 2. Lorenz Curve for the magnitude of the situational clustering 

Further examination of the CACC matrix reveals that the main effect that each predictor 

variable has on the outcome varies greatly. For example, profiles 1 and 24 are identical, except for 

the Restaurant variable. At least one restaurant is present in profile 1, but absent in profile 24 – 

all other factors are held constant across both. Isolating the main effect that restaurants have on 

the outcome in this way shows that their presence is associated with a much higher likelihood of 

crime (p1 = .50) than when they are absent (p24 = .12). This illustrates what is known as a “context-

specific interaction effect” (Miethe et al., 2008, p. 235), and helps provide insight into the complex 

causal relationships between predictors and outcomes that traditional analytic techniques struggle 

to disentangle. 

# Examine the differences between dominant profiles 1 and 24 
cacc_matrix[c(1, 24), ] 

## # A tibble: 2 x 9 
##   RaceHetQTL PctPvtQTL MedHhIncQTL PctMvQTL   Gas Restaurant  Pawn N_Break     p 
##        <dbl>     <dbl>       <dbl>    <dbl> <dbl>      <dbl> <dbl>   <int> <dbl> 
## 1          1         3           1        2     0          1     0      10 0.5   
## 2          1         3           1        2     0          0     0      26 0.115 

We were able to identify these effects between specific pairs of profiles easily in the current 

CACC matrix because it contains only 31 dominant profiles. However, examining larger truth 

tables for all sources of contextual variability would be an arduous task and prone to error. In order 

to automate this process, cacc provides the dedicated function main_effect() for identifying and 

visually displaying these sources of contextual variability (Hart et al., 2017).  

When executed, this function scans all existing values in each variable and lets the user 

choose which ones to include in the contextual variability analysis as the reference value. To do 
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this, you must select a value for each variable (i.e., the reference value) and enter it directly into 

the console. Any variable can be purposely omitted by entering the value -1. If the CACC matrix 

contains any constants (i.e., a variable with only one observed attribute), the function omits it 

because no effect can be evaluated. For example, in this example, Pawn is constant and is therefore 

excluded from this analysis. 

For the current demonstration, we chose the highest value associated with each predictor 

variable: PctPvtQTL = 3 (i.e., upper quartile); Restaurant = 1 (i.e., present); Gas = 1 (i.e., 

present). After these values were selected, the function performs the analysis and displays the 

results as a series of box plots (see Figure 3). Box plots are an effective way to illustrate the degree 

to which the likelihood of observing an outcome varies when the main effect of a predictor variable 

is isolated from the influence of all other factors used in the analysis.  

For example, when all other predictors are held constant, the likelihood of a crime 

occurring when at least one restaurant is present in the environment is increased by about 50% in 

certain contexts, but decreased by about 15% in others. The average likelihood of crime occurring 

in the environment with a restaurant present is about 17%. In addition to the box plots, the function 

returns a numerical summary of the distribution of the selected variables in the console.  

# Scan the CACC matrix for potential sources of contextual variability 
main_effect(cacc_matrix) 

 

Figure 3. Main effects of the highest variable values. 

Summary 

Most crime and place studies use traditional variable-oriented data analysis techniques to answer 

research questions. Although these methods provide a parsimonious and well understood way to 
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answer important questions, they are not designed to provide us with an in-depth understanding of 

the context within which outcomes of interest occur. For example, simple linear regression 

involves “fitting” a Best Linear Unbiased Estimator (i.e., a BLUE line) to pairs of observations 

and calculating the slope of the line to determine whether the predictor and outcome variables are 

linearly associated. The formula for the BLUE line’s slope (𝑚) is calculated by applying the 

following equation: 

𝑚 = 𝑟 (
𝑠𝑦
𝑠𝑥
) 

where 𝑟 is the correlation between the independent variable (𝑥) and the dependent variable (𝑦), 

and 𝑠𝑥 and 𝑠𝑦 are their standard deviations, respectively. The slope of the BLUE line can then be 

used to determine the 𝑦-intercept, which is based on the average values of both 𝑥 and 𝑦.  

Single measures of central tendency and dispersion are at the heart of most traditional 

methods, like regression analysis. Reducing observed data to a single measure is an efficient way 

to understand and describe large samples. Using them to model associates and make predictions, 

however, can result in a loss of information and understanding of how “context matters”. CACC 

is designed to overcome this limitation and should be used to complement these more popular 

approaches to data analysis. 

With the application of the newly developed cacc package, in this chapter, we 

demonstrated how configural analysis can be more easily applied to both exploratory and 

confirmatory crime and place research. The package allows researchers to simultaneously focus 

on specificity and multiple causality that underlies most qualitative research and the variable-

oriented search for general patterns across contexts that is at the heart of quantitative studies. By 

assuming maximum causal complexity and using basic methods to visually identify patterns within 

case configurations, CACC provides a simple way of addressing both of these concerns. Even for 

crime and place researchers who prefer more variable-oriented quantitative methods, CACC can 

augment and inform their substantive analysis by identifying possible problems with 

multicollinearity and low-cell frequencies. In short, the simplicity of CACC provides a succinct 

and visually appealing way to explore and confirm the nature of crime concentration, diversity, 

and complex causal patterns among multiple categorical variables. 
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1  R must download and install before the CACC package can be run. R for Windows can be downloaded from 

http://cran.r-project.org/bin/windows/base/ with Mac and Linux versions also available. Once R is installed, it is 

recommended that R Studio be installed, which can be downloaded from 

https://www.rstudio.com/products/rstudio/download/. Although R Studio is not necessary, it is an interface that is 

easier to use than the default R Console. 

2  The CACC R package is available for download at https://github.com/MiriamEsteve/CACC 

http://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/
https://github.com/MiriamEsteve/CACC
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